Acta Crystallographica Section E

Structure Reports

Online

catena-Poly[[[diaqua(2-sulfonatobenzoato)nickel(II)]-μ-1,2-di-4-pyridylethylene] 0.25-hydrate]

ISSN 1600-5368

Hong-Ping Xiao,* Xin-Hua Li and Mao-Lin Hu

School of Chemistry and Materials Science, Wenzhou Normal College, Wenzhou 325027, People's Republic of China

Correspondence e-mail:
hp_xiao@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
H -atom completeness 98%
Disorder in solvent or counterion
R factor $=0.032$
$w R$ factor $=0.083$
Data-to-parameter ratio $=15.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

In the title compound, $\left\{\left[\mathrm{Ni}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{5} \mathrm{~S}\right)\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\right.$-$\left.0.25 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, the $\mathrm{Ni}^{\mathrm{II}}$ atom has a distorted octahedral environment formed by two N and four O atoms. The 1,2-di-4pyridylethylene ligands, which lie on inversion centers, function as μ_{2}-bridging ligands to form a linear chain. The 2-sulfonatobenzoate ligands protrude alternately on both sides of the linear chain and chelate to the $\mathrm{Ni}^{\mathrm{II}}$ atoms through one carboxylate O atom and one sulfonate O atom.

Comment

The sulfonate group can exhibit very different coordination behavior compared to the carboxylate group in the constructions of metal-organic coordination polymers (Fan et al., 2004; Wang et al., 2004; Zheng et al., 2003). Numerous benzene-1,2dicarboxylate complexes have been extensively studied (Thirumurugan \& Natarajan, 2004; Yao et al., 2002). However, complexes with 2 -sulfonatobenzoate ($o-s b$), a ligand with a combination of sulfonate and carboxylate groups, are rather limited (Li \& Yang, 2004; Su et al., 2005). We report here a one-dimensional coordination polymer with the o-sb ligand, $\left\{\left[\mathrm{Ni}(o-s b)(\right.\right.$ bpe $\left.\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 0.25 \mathrm{H}_{2} \mathrm{O}\right\} \quad$ (bpe is 1,2-di-4-pyridylethylene), (I).

Received 28 January 2005 Accepted 2 February 2005 Online 12 February 2005

(I)

The $\mathrm{Ni}^{\mathrm{II}}$ atom in (I) has an octahedral geometry defined by two aqua O atoms, two O atoms from one o-sb ligand and two N atoms from two bpe ligands (Fig. 1). The Ni1-O bond lengths are in the range 2.0567 (13) -2.1358 (14) \AA. The trans angles of the octahedron are 172.19 (5), 173.65 (6) and $177.77(5)^{\circ}$, and the other angles are in the range 86.21 (6)97.74 (6) ${ }^{\circ}$ (Table 1). The o-sb ligand chelates to the $\mathrm{Ni}^{\mathrm{II}}$ center to form a six-membered ring. The dihedral angle between the planes of the o-sb ring and its carboxylate group is $12.6(3)^{\circ}$. The $\mathrm{C} 1-\mathrm{O} 1$ bond length $[1.265$ (2) \AA] is longer than the $\mathrm{C} 1-$ O2 distance $[1.247$ (2) Å], indicating more keto character in the latter. The two crystallographically independent centro-

Figure 1
The coordination environment of atom Ni1 in (I), showing the atom numbering and displacement ellipsoids at the 30% probability level. The unlabelled atoms of the left- and right-hand bridging ligands are related to the labelled atoms by $\frac{5}{2}-x, \frac{3}{2}+y, \frac{5}{2}-z$ and $\frac{3}{2}+x, \frac{5}{2}+y, 2+z$, respectively.
symmetric bpe ligands function as μ_{2}-bridging ligands, forming a linear chain. The o-sb ligands protrude on both sides of the linear chain (Fig. 2).

In the crystal structure, there are three intermolecular hydrogen bonds between the two coordinated water molecules and two carboxylate O atoms. The coordinated water atom O6 forms a hydrogen bond with atom O5 of an adjacent chain (Table 2). A three-dimensional network structure is thus formed by these hydrogen-bond interactions.

Experimental

Nickel(II) acetate tetrahydrate (0.5 mmol), 2-sulfobenzoic acid (0.5 mmol) and 1,2-di-4-pyridylethylene (1.0 mmol) were placed in a 30 ml Teflon-lined stainless steel Parr bomb together with water $(20 \mathrm{ml})$. The bomb was heated at 423 K for 6 d . The bomb was cooled slowly to room temperature to furnish green crystals.

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{5} \mathrm{~S}\right)\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]--$	$D_{x}=1.572 \mathrm{Mg} \mathrm{m}^{-3}$ $0.25 \mathrm{H}_{2} \mathrm{O}$ $M_{r}=481.63$
Monoclinic, $C 2 / c$	Cell parameters from 6367
$a=17.1636(9) \AA$	reflections
$b=16.5180(9) \AA$	$\theta=2.4-28.2^{\circ}$
$c=14.6151(8) \AA$	$T=298(2) \mathrm{Km}$
$\beta=100.798(1)^{\circ}$	Prism, green
$V=4070.1(4) \AA^{3}$	$0.35 \times 0.27 \times 0.23 \mathrm{~mm}$
$Z=8$	
Data collection	
Bruker SMART CCD area-detector	4429 independent reflections
\quad diffractometer	4072 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.020$
Absorption correction: multi-scan	$\theta_{\text {max }}=27.0^{\circ}$
$\quad(S A D A B S ;$ Bruker, 2002)	$h=-21 \rightarrow 17$
$T_{\text {min }}=0.699, T_{\text {max }}=0.786$	$k=-21 \rightarrow 17$
12199 measured reflections	$l=-18 \rightarrow 18$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0432 P)^{2}\right. \\
& \quad+5.4805 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.002 \\
& \Delta \rho_{\max }=0.63 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.36 \mathrm{e}^{-3}
\end{aligned}
$$

$w R\left(F^{2}\right)=0.083$
$S=1.03$
4429 reflections
278 parameters

H -atom parameters constrained
Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

Ni1-O1	$2.0567(13)$	Ni1-N1	$2.0963(15)$
Ni1-O7	$2.0690(13)$	Ni1-O6	$2.1358(14)$
Ni1-O4	$2.0812(13)$	O1-C1	$1.265(2)$
Ni1-N2	$2.0856(15)$	O2-C1	$1.247(2)$
O1-Ni1-O7	$86.86(6)$	O4-Ni1-N1	$88.43(6)$
O1-Ni1-O4	$90.97(5)$	N2-Ni1-N1	$173.65(6)$
O7-Ni1-O4	$177.77(5)$	O1-Ni1-O6	$172.19(5)$
O1-Ni1-N2	$88.13(6)$	O7-Ni1-O6	$86.31(6)$
O7-Ni1-N2	$91.39(6)$	O4-Ni1-O6	$95.89(5)$
O4-Ni1-N2	$89.06(6)$	N2-Ni1-O6	$88.25(6)$
O1-Ni1-N1	$97.74(6)$	N1-Ni1-O6	$86.21(6)$
O7-Ni1-N1	$91.34(6)$		

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 7-\mathrm{H} 7 B \cdots \mathrm{O} 1^{\text {i }}$	0.81	2.02	2.8273 (18)	173
$\mathrm{O} 7-\mathrm{H} 7 A \cdots \mathrm{O} 2^{\text {ii }}$	0.82	1.90	2.720 (2)	175
$\mathrm{O} 6-\mathrm{H} 6 B \cdots \mathrm{O} 2{ }^{\text {ii }}$	0.81	2.03	2.827 (2)	168
$\mathrm{O} 6-\mathrm{H} 6 A \cdots \mathrm{O} 5^{\text {iii }}$	0.82	2.02	2.757 (2)	149

Symmetry codes: (i) $2-x, 2-y, 2-z$; (ii) $x, 2-y$, $\frac{1}{2}+z$; (iii) $\frac{3}{2}-x, \frac{3}{2}-y, 2-z$.

H atoms attached to C atoms were included in the refinement at calculated positions in the riding-model approximation $[\mathrm{C}-\mathrm{H}=$ $0.93 \AA$ and $\left.U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$. The water H atoms were located and refined with distance restraints $\mathrm{O}-\mathrm{H}=0.82$ (1) \AA and with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$. At this stage, the maximum difference density of $4.59 \AA^{-3}$ indicated the presence of a possible atom site. This peak was found near atom H 1 , at a hydrogen-bonding distance of $2.85 \AA$. Attempts to refine this peak as a water O atom (O8) with full occupancy resulted in a high $U_{\text {iso }}$ value, and hence it was refined with partial occupancy. The occupancy of O8 was initially refined to 0.26 (1) and later fixed at 0.25 . Positioning of H atoms attached to O 8 was not possible.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Bruker, 2002); software used to prepare material for publication: SHELXTL (Bruker, 2002).

Figure 2

Illustration of a linear chain in (I).

metal-organic papers

We thank the Zhejiang Provincial Natural Science Foundation (No. Y404294) and the Wenzhou Science and Technology Project (No. S2003A008).

References

Bruker (2002). SMART (Version 5.618), SAINT (Version 6.02a), SADABS (Version 2.03) and SHELXTL (Version 5.03). Bruker AXS Inc., Madison, Wisconsin, USA.
Fan, S.-R., Xiao, H.-P., Zhang, L.-P., Cai, G.-Q. \& Zhu, L.-G. (2004). Acta Cryst. E60, m1970-m1972.

Li, X.-H. \& Yang, S.-Z. (2004). Acta Cryst. C60, m423-m425.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Su, W., Bi, W.-H., Li, X. \& Cao, R. (2005). Acta Cryst. C61, m16-m18.
Thirumurugan, T. \& Natarajan, S. (2004). Inorg. Chem. Commun. 7, 395399.

Wang, W. G., Zhang, J., Song, L. J. \& Ju, Z. F. (2004). Inorg. Chem. Commun. 7, 858-860.
Yao, J. C., Huang, W., Li, B., Gou, S. H. \& Xu, Y. (2002). Inorg. Chem. Comтип. 5, 711-714.
Zheng, S. L., Zheng, J. P., Chen, X. M. \& Ng, S. W. (2003). J. Solid State Chem. 172, 45-52.

