metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hong-Ping Xiao,* Xin-Hua Li and Mao-Lin Hu

School of Chemistry and Materials Science, Wenzhou Normal College, Wenzhou 325027, People's Republic of China

Correspondence e-mail: hp_xiao@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 298 K Mean σ (C–C) = 0.003 Å H-atom completeness 98% Disorder in solvent or counterion R factor = 0.032 wR factor = 0.083 Data-to-parameter ratio = 15.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

catena-Poly[[[diaqua(2-sulfonatobenzoato)nickel(II)]μ-1,2-di-4-pyridylethylene] 0.25-hydrate]

In the title compound, {[Ni(C₇H₄O₅S)(C₁₂H₁₀N₂)(H₂O)₂]-0.25H₂O]_n, the Ni^{II} atom has a distorted octahedral environment formed by two N and four O atoms. The 1,2-di-4-pyridylethylene ligands, which lie on inversion centers, function as μ_2 -bridging ligands to form a linear chain. The 2-sulfonatobenzoate ligands protrude alternately on both sides of the linear chain and chelate to the Ni^{II} atoms through one carboxylate O atom and one sulfonate O atom.

Received 28 January 2005 Accepted 2 February 2005 Online 12 February 2005

Comment

The sulfonate group can exhibit very different coordination behavior compared to the carboxylate group in the constructions of metal-organic coordination polymers (Fan *et al.*, 2004; Wang *et al.*, 2004; Zheng *et al.*, 2003). Numerous benzene-1,2dicarboxylate complexes have been extensively studied (Thirumurugan & Natarajan, 2004; Yao *et al.*, 2002). However, complexes with 2-sulfonatobenzoate (*o*-sb), a ligand with a combination of sulfonate and carboxylate groups, are rather limited (Li & Yang, 2004; Su *et al.*, 2005). We report here a one-dimensional coordination polymer with the *o*-sb ligand, {[Ni(*o*-sb)(bpe)(H₂O)₂]·0.25H₂O} (bpe is 1,2-di-4-pyridylethylene), (I).

The Ni^{II} atom in (I) has an octahedral geometry defined by two aqua O atoms, two O atoms from one *o*-sb ligand and two N atoms from two bpe ligands (Fig. 1). The Ni1–O bond lengths are in the range 2.0567 (13)–2.1358 (14) Å. The *trans* angles of the octahedron are 172.19 (5), 173.65 (6) and 177.77 (5)°, and the other angles are in the range 86.21 (6)– 97.74 (6)° (Table 1). The *o*-sb ligand chelates to the Ni^{II} center to form a six-membered ring. The dihedral angle between the planes of the *o*-sb ring and its carboxylate group is 12.6 (3)°. The C1–O1 bond length [1.265 (2) Å] is longer than the C1– O2 distance [1.247 (2) Å], indicating more keto character in the latter. The two crystallographically independent centro-

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

The coordination environment of atom Ni1 in (I), showing the atom numbering and displacement ellipsoids at the 30% probability level. The unlabelled atoms of the left- and right-hand bridging ligands are related to the labelled atoms by $\frac{5}{2} - x, \frac{3}{2} + y, \frac{5}{2} - z$ and $\frac{3}{2} + x, \frac{5}{2} + y, 2 + z$, respectively.

symmetric bpe ligands function as μ_2 -bridging ligands, forming a linear chain. The o-sb ligands protrude on both sides of the linear chain (Fig. 2).

In the crystal structure, there are three intermolecular hydrogen bonds between the two coordinated water molecules and two carboxylate O atoms. The coordinated water atom O6 forms a hydrogen bond with atom O5 of an adjacent chain (Table 2). A three-dimensional network structure is thus formed by these hydrogen-bond interactions.

Experimental

Nickel(II) acetate tetrahydrate (0.5 mmol), 2-sulfobenzoic acid (0.5 mmol) and 1,2-di-4-pyridylethylene (1.0 mmol) were placed in a 30 ml Teflon-lined stainless steel Parr bomb together with water (20 ml). The bomb was heated at 423 K for 6 d. The bomb was cooled slowly to room temperature to furnish green crystals.

Crystal data

$[Ni(C_7H_4O_5S)(C_{12}H_{10}N_2)(H_2O)_2]$.	$D_x = 1.572 \text{ Mg m}^{-3}$
0.25H ₂ O	Mo $K\alpha$ radiation
$M_r = 481.63$	Cell parameters from 6367
Monoclinic, $C2/c$	reflections
a = 17.1636 (9) Å	$\theta = 2.4-28.2^{\circ}$
b = 16.5180(9) Å	$\mu = 1.10 \text{ mm}^{-1}$
c = 14.6151 (8) Å	T = 298 (2) K
$\beta = 100.798 \ (1)^{\circ}$	Prism, green
$V = 4070.1 (4) \text{ Å}^3$	$0.35 \times 0.27 \times 0.23 \text{ mm}$
<i>Z</i> = 8	
Data collection	
Bruker SMART CCD area-detector diffractometer	4429 independent reflections 4072 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.020$ $\theta_{\rm max} = 27.0^{\circ}$ $h = -21 \rightarrow 17$ $k = -21 \rightarrow 17$ $l = -18 \rightarrow 18$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0432P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.032$	+ 5.4805P]
$wR(F^2) = 0.083$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.03	$(\Delta/\sigma)_{\rm max} = 0.002$
4429 reflections	$\Delta \rho_{\rm max} = 0.63 \ {\rm e} \ {\rm \AA}^{-3}$
278 parameters	$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

Ni1-O1	2.0567 (13)	Ni1-N1	2.0963 (15)
Ni1-07	2.0690 (13)	Ni1-O6	2.1358 (14)
Ni1-O4	2.0812 (13)	O1-C1	1.265 (2)
Ni1-N2	2.0856 (15)	O2-C1	1.247 (2)
01 - Ni1 - 07	86 86 (6)	O4-Ni1-N1	88 43 (6)
O1-Ni1-O4	90.97 (5)	N2-Ni1-N1	173.65 (6)
O7-Ni1-O4	177.77 (5)	O1-Ni1-O6	172.19 (5)
O1-Ni1-N2	88.13 (6)	O7-Ni1-O6	86.31 (6)
O7-Ni1-N2	91.39 (6)	O4-Ni1-O6	95.89 (5)
O4-Ni1-N2	89.06 (6)	N2-Ni1-O6	88.25 (6)
O1-Ni1-N1	97.74 (6)	N1-Ni1-O6	86.21 (6)
O7-Ni1-N1	91.34 (6)		

Table 2 Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	$D-{\rm H}$	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O7 - H7B \cdots O1^{i}$	0.81	2.02	2.8273 (18)	173
$O7 - H7A \cdots O2^{ii}$	0.82	1.90	2.720 (2)	175
$O6-H6B\cdots O2^{ii}$	0.81	2.03	2.827 (2)	168
$O6-H6A\cdots O5^{iii}$	0.82	2.02	2.757 (2)	149

Symmetry codes: (i) 2 - x, 2 - y, 2 - z; (ii) x, 2 - y, $\frac{1}{2} + z$; (iii) $\frac{3}{2} - x$, $\frac{3}{2} - y$, 2 - z.

H atoms attached to C atoms were included in the refinement at calculated positions in the riding-model approximation [C-H] =0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$]. The water H atoms were located and refined with distance restraints O-H = 0.82(1) Å and with $U_{iso}(H) = 1.5 U_{ea}(O)$. At this stage, the maximum difference density of 4.59 $Å^{-3}$ indicated the presence of a possible atom site. This peak was found near atom H1, at a hydrogen-bonding distance of 2.85 Å. Attempts to refine this peak as a water O atom (O8) with full occupancy resulted in a high U_{iso} value, and hence it was refined with partial occupancy. The occupancy of O8 was initially refined to 0.26 (1) and later fixed at 0.25. Positioning of H atoms attached to O8 was not possible.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Bruker, 2002); software used to prepare material for publication: SHELXTL (Bruker, 2002).

metal-organic papers

We thank the Zhejiang Provincial Natural Science Foundation (No. Y404294) and the Wenzhou Science and Technology Project (No. S2003A008).

References

- Bruker (2002). *SMART* (Version 5.618), *SAINT* (Version 6.02a), *SADABS* (Version 2.03) and *SHELXTL* (Version 5.03). Bruker AXS Inc., Madison, Wisconsin, USA.
- Fan, S.-R., Xiao, H.-P., Zhang, L.-P., Cai, G.-Q. & Zhu, L.-G. (2004). Acta Cryst. E60, m1970–m1972.

- Li, X.-H. & Yang, S.-Z. (2004). Acta Cryst. C60, m423-m425.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Su, W., Bi, W.-H., Li, X. & Cao, R. (2005). Acta Cryst. C61, m16-m18.
- Thirumurugan, T. & Natarajan, S. (2004). Inorg. Chem. Commun. 7, 395–399.
- Wang, W. G., Zhang, J., Song, L. J. & Ju, Z. F. (2004). *Inorg. Chem. Commun.* 7, 858–860.
- Yao, J. C., Huang, W., Li, B., Gou, S. H. & Xu, Y. (2002). Inorg. Chem. Commun. 5, 711–714.
- Zheng, S. L., Zheng, J. P., Chen, X. M. & Ng, S. W. (2003). J. Solid State Chem. 172, 45–52.